Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.047
Filtrar
1.
Biochem Biophys Res Commun ; 709: 149837, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38555839

RESUMEN

Accumulating evidence suggests that various cellular stresses interfere with the end processing of mRNA synthesis and lead to the production of abnormally long transcripts, known as readthrough transcripts (RTTs), which extend beyond the termination sites. Small mammalian hibernators repeatedly enter a state referred to as deep torpor (DT), where the metabolic rate, respiration rate, and core body temperature become extremely low, which produces various types of cellular stresses and therefore induces RTTs. However, the types of stresses and processes around the DT that cause RTTs are unclear. In the present study, we showed that RTTs are produced from different gene loci in the livers of Syrian hamsters under DT and summer-like conditions. Moreover, in vitro analysis using hamster primary hepatocytes revealed that DT-specific RTTs are induced by a slow decline in temperature, as seen in body temperature in the entrance phase of DT, but not by rapid cold treatment or hypoxia. In addition, it was observed that RTTs were not elongated under a significantly cold temperature (4 °C). These results indicate that DT-specific RTTs are produced during the entrance phase of torpor by a slow decrease in body temperature.


Asunto(s)
Hibernación , Animales , Cricetinae , Hibernación/genética , Temperatura , Temperatura Corporal , Mamíferos , Hígado , Mesocricetus
2.
Zool Res ; 45(2): 341-354, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38485504

RESUMEN

Dormancy represents a fascinating adaptive strategy for organisms to survive in unforgiving environments. After a period of dormancy, organisms often exhibit exceptional resilience. This period is typically divided into hibernation and aestivation based on seasonal patterns. However, the mechanisms by which organisms adapt to their environments during dormancy, as well as the potential relationships between different states of dormancy, deserve further exploration. Here, we selected Perccottus glenii and Protopterus annectens as the primary subjects to study hibernation and aestivation, respectively. Based on histological and transcriptomic analysis of multiple organs, we discovered that dormancy involved a coordinated functional response across organs. Enrichment analyses revealed noteworthy disparities between the two dormant species in their responses to extreme temperatures. Notably, similarities in gene expression patterns pertaining to energy metabolism, neural activity, and biosynthesis were noted during hibernation, suggesting a potential correlation between hibernation and aestivation. To further explore the relationship between these two phenomena, we analyzed other dormancy-capable species using data from publicly available databases. This comparative analysis revealed that most orthologous genes involved in metabolism, cell proliferation, and neural function exhibited consistent expression patterns during dormancy, indicating that the observed similarity between hibernation and aestivation may be attributable to convergent evolution. In conclusion, this study enhances our comprehension of the dormancy phenomenon and offers new insights into the molecular mechanisms underpinning vertebrate dormancy.


Asunto(s)
Estivación , Hibernación , Humanos , Animales , Estivación/genética , Peces/genética , Perfilación de la Expresión Génica/veterinaria , Transcriptoma , Hibernación/genética
3.
Am J Physiol Regul Integr Comp Physiol ; 326(4): R311-R318, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38344803

RESUMEN

Aphagic hibernators such as the golden-mantled ground squirrel (GMGS; Callospermophilus lateralis) can fast for months and exhibit profound seasonal fluctuations in body weight, food intake, and behavior. Brain-derived neurotrophic factor (BDNF) regulates cellular and systemic metabolism via mechanisms that are conserved across mammalian species. In this study, we characterized regional changes in BDNF with hibernation, hypothermia, and seasonal cycle in GMGS. Analysis of BDNF protein concentrations by ELISA revealed overlapping seasonal patterns in the hippocampus and hypothalamus, where BDNF levels were highest in summer and lowest in winter. BDNF is the primary ligand for receptor tyrosine kinase B (TrkB), and BDNF/TrkB signaling in the brain potently regulates energy expenditure. To examine the functional relevance of seasonal variation in BDNF, hibernating animals were injected with the small molecule TrkB agonist 7,8-dihydroxyflavone (DHF) daily for 2 wk. When compared with vehicle, DHF-treated animals exhibited fewer torpor bouts and shorter bout durations. These results suggest that activating BDNF/TrkB disrupts hibernation and raise intriguing questions related to the role of BDNF as a potential regulatory mechanism or downstream response to seasonal changes in body temperature and environment.NEW & NOTEWORTHY Golden-mantled ground squirrels exhibit dramatic seasonal fluctuations in metabolism and can fast for months while hibernating. Brain-derived neurotrophic factor is an essential determinant of cellular and systemic metabolism, and in this study, we characterized seasonal fluctuations in BDNF expression and then administered the small molecule BDNF mimetic 7,8-dihydroxyflavone (DHF) in hibernating squirrels. The results indicate that activating BDNF/TrkB signaling disrupts hibernation, with implications for synaptic homeostasis in prolonged hypometabolic states.


Asunto(s)
Hibernación , Animales , Hibernación/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Estaciones del Año , Temperatura Corporal/fisiología , Sciuridae/metabolismo
4.
PLoS One ; 19(2): e0298245, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38363754

RESUMEN

The gut microbiota maintains a deeply symbiotic relationship with host physiology, intricately engaging with both internal (endogenous) and external (exogenous) factors. Anurans, especially those in temperate regions, face the dual challenges of significant external influences like hibernation and complex internal variances tied to different life histories. In our research, we sought to determine whether different life stages (juvenile versus adult) of the Japanese wrinkled frog (Glandirana rugosa) lead to distinct shifts in gut bacterial communities during winter (hibernation) and its subsequent transition to spring. As hypothesized, we observed a more pronounced variability in the gut bacterial diversity and abundance in juvenile frogs compared to their adult counterparts. This suggests that the gut environment may be more resilient or stable in adult frogs during their hibernation period. However, this pronounced difference was confined to the winter season; by spring, the diversity and abundance of gut bacteria in both juvenile and adult frogs aligned closely. Specifically, the variance in gut bacterial diversity and composition between winter and spring appears to mirror the frogs' ecological adaptations. During the hibernation period, a dominance of Proteobacteria suggests an emphasis on supporting intracellular transport and maintaining homeostasis, as opposed to active metabolism in the frogs. Conversely, come spring, an uptick in bacterial diversity coupled with a dominance of Firmicutes and Bacteroidetes points to an upsurge in metabolic activity post-hibernation, favoring enhanced nutrient assimilation and energy metabolism. Our findings highlight that the relationship between the gut microbiome and its host is dynamic and bidirectional. However, the extent to which changes in gut bacterial diversity and composition contribute to enhancing hibernation physiology in frogs remains an open question, warranting further investigation.


Asunto(s)
Microbioma Gastrointestinal , Hibernación , Animales , Microbioma Gastrointestinal/fisiología , Hibernación/fisiología , Estaciones del Año , Anuros , Bacterias/genética , Ranidae/microbiología
5.
Curr Biol ; 34(4): 923-930.e5, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38325375

RESUMEN

Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) hibernate for several months each winter without access to water,1 but the mechanisms that maintain fluid homeostasis during hibernation are poorly understood. In torpor, when body temperature (TB) reaches 4°C, squirrels decrease metabolism, slow heart rate, and reduce plasma levels of the antidiuretic hormones arginine vasopressin (AVP) and oxytocin (OXT).1 Squirrels spontaneously undergo interbout arousal (IBA) every 2 weeks, temporarily recovering an active-like metabolism and a TB of 37°C for up to 48 h.1,2 Despite the low levels of AVP and OXT during torpor, profound increases in blood pressure and heart rate during the torpor-IBA transition are not associated with massive fluid loss, suggesting the existence of a mechanism that protects against diuresis at a low TB. Here, we demonstrate that the antidiuretic hormone release pathway is activated by hypothalamic supraoptic nucleus (SON) neurons early in the torpor-arousal transition. SON neuron activity, dense-core vesicle release from the posterior pituitary, and plasma hormone levels all begin to increase before TB reaches 10°C. In vivo fiber photometry of SON neurons from hibernating squirrels, together with RNA sequencing and c-FOS immunohistochemistry, confirms that SON is electrically, transcriptionally, and translationally active to monitor blood osmolality throughout the dynamic torpor-arousal transition. Our work emphasizes the importance of the antidiuretic pathway during the torpor-arousal transition and reveals that the neurophysiological mechanism that coordinates the hormonal response to retain fluid is active at an extremely low TB, which is prohibitive for these processes in non-hibernators.


Asunto(s)
Hibernación , Letargo , Animales , Hibernación/fisiología , Letargo/fisiología , Sciuridae/fisiología , Secuencia de Bases
6.
PLoS One ; 19(2): e0297871, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319950

RESUMEN

White-nose syndrome is a fungal disease that has decimated hibernating bats from multiple North American species. In 2014, the invasive fungus arrived at a hibernaculum of little brown bats (Myotis lucifugus) inside the spillway of Tippy Dam, located near Wellston, Michigan, USA, yet surprisingly, this population has not experienced the declines seen elsewhere. Unlike a typical subterranean hibernaculum, light enters the spillway through small ventilation holes. We hypothesized that this light causes the hibernating bats to maintain a circadian rhythm, thereby saving energy via social thermoregulation during synchronous arousals. To test this idea, we used high-resolution thermal cameras to monitor arousals from October 2019 to April 2020. We found that arousals followed a circadian rhythm, peaking after sunset, and that most observed arousals (>68%) occurred within a cluster of bats allowing for social thermoregulation. These findings are consistent with the hypothesis that light-induced synchronized arousals contribute to the unprecedented absence of mass mortality from white-nose syndrome in this large population. Using light to maintain a circadian rhythm in bats should be tested as a potential tool for mitigating mortality from white-nose syndrome. More generally, studying populations that have been largely unaffected by white-nose syndrome may provide insight into mitigation strategies for protecting the remaining populations.


Asunto(s)
Quirópteros , Hibernación , Animales , Hibernación/fisiología , Quirópteros/fisiología , Regulación de la Temperatura Corporal , Hongos , Nivel de Alerta/fisiología
7.
FASEB J ; 38(3): e23462, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318662

RESUMEN

Hibernation, a survival strategy in mammals for extreme climates, induces physiological phenomena such as ischemia-reperfusion and metabolic shifts that hold great potential for advancements in modern medicine. Despite this, the molecular mechanisms underpinning hibernation remain largely unclear. This study used RNA-seq and Iso-seq techniques to investigate the changes in liver transcriptome expression of Rhinolophus pusillus during hibernation and active periods, as well as under different microhabitat temperatures. We identified 11 457 differentially expressed genes during hibernation and active periods, of which 395 showed significant differential expression. Genes associated with fatty acid catabolism were significantly upregulated during hibernation, whereas genes related to carbohydrate metabolism and glycogen synthesis were downregulated. Conversely, immune-related genes displayed differential expression patterns: genes tied to innate immunity were significantly upregulated, while those linked to adaptive immunity and inflammatory response were downregulated. The analysis of transcriptomic data obtained from different microhabitat temperatures revealed that R. pusillus exhibited an upregulation of genes associated with lipid metabolism in lower microhabitat temperature. This upregulation facilitated an enhanced utilization rate of triglyceride, ultimately resulting in increased energy provision for the organism. Additionally, R. pusillus upregulated gluconeogenesis-related genes regardless of the microhabitat temperature, demonstrating the importance of maintaining blood glucose levels during hibernation. Our transcriptomic data reveal that these changes in liver gene expression optimize energy allocation during hibernation, suggesting that liver tissue adaptively responds to the inherent stress of its function during hibernation. This study sheds light on the role of differential gene expression in promoting more efficient energy allocation during hibernation. It contributes to our understanding of how liver tissue adapts to the stressors associated with this state.


Asunto(s)
Quirópteros , Hibernación , Animales , Transcriptoma , Hibernación/genética , Temperatura , Quirópteros/genética , Regulación de la Expresión Génica , Hígado/metabolismo
8.
J Integr Neurosci ; 23(2): 28, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38419441

RESUMEN

Hibernation is a prolonged state of low metabolism that animals enter in response to extreme environmental conditions to enhance their survival in harsh environments. Recent studies have shown that non-hibernating species can also be induced to enter a hibernation-like state. 2-methyl-2-thiazoline (2MT), a potent analog of fox odor, can induce fear-related behavior in mice with low body temperature and low metabolism, and has specific organ-protective effects. A systematic understanding of 2MT-induced hibernation and its underlying mechanisms may aid in expanding its applications in medicine and other fields.


Asunto(s)
Hibernación , Ratones , Animales , Hibernación/fisiología , Tiazoles/farmacología , Miedo , Odorantes
9.
J Therm Biol ; 119: 103785, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38320933

RESUMEN

Extracellular Ca2+ plays a pivotal role in the regulation of cardiac contractility under normal and extreme conditions. Here, by using nickel chloride (NiCl2), a non-specific blocker of extracellular Ca2+ influx, we studied the input of extracellular Ca2+ on the regulation of papillary muscle (PM) contractility under normal and hypothermic conditions in ground squirrels (GS), and rats. By measuring isometric force of contraction, we studied how NiCl2 affects force-frequency relationship and the rest effect in PM of these species at 30 °C and 10 °C. We found that at 30 °C 1.5 mM NiCl2 significantly reduced force of contraction across entire frequency range in active GS and rats, whereas in hibernating GS force of contraction was reduced at low and high frequency range. Additionally, NiCl2 evoked spontaneous contractility in rats but not GS PM. The rest effect was significantly reduced by NiCl2 for active GS and rats but not hibernating GS. At 10 °C, NiCl2 fully reduced contractility in active GS and, to a lesser extent, in rats, whereas in hibernating GS it was significant only at 0.3 Hz. The rest effect was significantly reduced by NiCl2 in both active and hibernating GS, whereas it was unmasked in rats that had high contractility under hypothermic conditions in control. Our results show a significant contribution of extracellular Ca2+ to myocardial contractility in GS not only in active but also in hibernating states, especially under hypothermic conditions, whereas limitation of extracellular Ca2+ influx in rats under hypothermia can play protective role for myocardial contractility.


Asunto(s)
Hibernación , Hipotermia , Níquel , Ratas , Animales , Músculos Papilares/fisiología , Hipotermia/inducido químicamente , Ratas Wistar , Sciuridae/fisiología , Hibernación/fisiología
10.
Sci Rep ; 14(1): 2675, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302685

RESUMEN

"Lunar phobia" in bats has been widely discussed since its description in tropical bats in 1978. The phenomenon has been frequently contested and supported and was first reported in European bats in 2020. Our study seeks to clarify the debate by describing the relationship between the activity of selected swarming vespertilionid bats (Family: Vespertilionidae) and moonlight levels. To verify a potential connection to the latter, a swarming dataset was analysed in respect of estimated moonlight illumination. Moonlight estimates were based on geographical location and several lunar parameters, to accurately characterise the non-linear relationship between moon phase and illumination (lux). The swarming data consisted of 32 netting and 14 echolocation recording sessions collected between August and October 2014 and 2015. Our data included 3,265 netted bats from 13 species and 15,919 bat calls from 10 confirmed species. Data was collected at the large Central European hibernation/swarming site - Natura 2000 PLH080003 "Nietoperek" in western Poland (N 52.394400, E 15.480600). Generalised linear mixed models (GLMMs) determined insignificant relationships between bats and moonlight illumination. Our analysis confirms an absence of impact of moonlight intensity on swarming bats and thereby rejects the lunar phobia phenomena in at least six insectivorous bat species (Myotis myotis, M. daubentonii, M. nattereri, M. bechsteinii, Barbastella barbastellus, Plecotus auritus) swarming in the autumn.


Asunto(s)
Quirópteros , Hibernación , Trastornos Fóbicos , Animales , Polonia
11.
J Exp Biol ; 227(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353043

RESUMEN

Many mammals hibernate during winter, reducing energy expenditure via bouts of torpor. The majority of a hibernator's energy reserves are used to fuel brief, but costly, arousals from torpor. Although arousals likely serve multiple functions, an important one is to restore water stores depleted during torpor. Many hibernating bat species require high humidity, presumably to reduce torpid water loss, but big brown bats (Eptesicus fuscus) appear tolerant of a wide humidity range. We tested the hypothesis that hibernating female E. fuscus use behavioural flexibility during torpor and arousals to maintain water balance and reduce energy expenditure. We predicted: (1) E. fuscus hibernating in dry conditions would exhibit more compact huddles during torpor and drink more frequently than bats in high humidity conditions; and (2) the frequency and duration of torpor bouts and arousals, and thus total loss of body mass would not differ between bats in the two environments. We housed hibernating E. fuscus in temperature- and humidity-controlled incubators at 50% or 98% relative humidity (8°C, 110 days). Bats in the dry environment maintained a more compact huddle during torpor and drank more frequently during arousals. Bats in the two environments had a similar number of arousals, but arousal duration was shorter in the dry environment. However, total loss of body mass over hibernation did not differ between treatments, indicating that the two groups used similar amounts of energy. Our results suggest that behavioural flexibility allows hibernating E. fuscus to maintain water balance and reduce energy costs across a wide range of hibernation humidities.


Asunto(s)
Quirópteros , Hibernación , Animales , Femenino , Humedad , Quirópteros/fisiología , Hibernación/fisiología , Nivel de Alerta/fisiología , Conducta de Ingestión de Líquido , Agua
12.
J Comp Physiol B ; 194(1): 95-104, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38170253

RESUMEN

Mus musculus enters a torpid state in response to caloric restriction in sub-thermoneutral ambient temperatures. This torpid state is characterized by an adaptive and controlled decrease in metabolic rate, heart rate, body temperature, and activity. Previous research has identified the paraventricular nucleus (PVN) within the hypothalamus, a region containing oxytocin neurons, as a location that is active during torpor onset. We hypothesized that oxytocin neurons within the PVN are part of this neural circuit and that activation of oxytocin neurons would deepen and lengthen torpor bouts. We report that activation of oxytocin neurons alone is not sufficient to induce a torpor-like state in the fed mouse, with no significant difference in body temperature or heart rate upon activation of oxytocin neurons. However, we found that activation of oxytocin neurons prior to the onset of daily torpor both deepens and lengthens the subsequent bout, with a 1.7 ± 0.4 °C lower body temperature and a 135 ± 32 min increase in length. We therefore conclude that oxytocin neurons are involved in the neural circuitry controlling daily torpor in the mouse.


Asunto(s)
Hibernación , Letargo , Ratones , Animales , Ayuno , Oxitocina , Letargo/fisiología , Temperatura Corporal/fisiología , Neuronas/fisiología , Hibernación/fisiología
13.
Sci Rep ; 14(1): 2117, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267504

RESUMEN

One of the principal consequences of climate warming on hibernating mammals could be the loss of optimal conditions for hibernation. Although hibernating mammals, like bats, may be particularly vulnerable to climate warming due to a potential reduction of energy saving during the hibernation, there is a lack of knowledge regarding how they will be affected and how they will respond to this impact. Here, we examine the variation in the body condition of Schreiber's bent-winged bat (Miniopterus schreibersii) to investigate changes in the optimization energy demand. Using a 20-year dataset (1998-2017), we analyse the temporal trends of body condition in three key stages of the hibernation period: onset and end of hibernation and early activity. Our results indicate that body condition at the onset and end of hibernation have decreased significantly over these 20 years. However, despite this lower body condition, the decrease of mass loss rate in the last decade (although not significant) indicate a greater saving of fat reserves. The significant increase in winter temperatures did not affect body condition or reserve depletion, instead, lower body condition was observed with a higher number of days below 0 °C. Unlike other hibernating bat species, the females had lower fat reserves than males in all three periods considered. This study indicates that hibernation energy requirements could be changing as an adaptation to a warmer climate and that hibernating bats can survive the winter by optimizing their lower accumulation of reserves.


Asunto(s)
Quirópteros , Hibernación , Femenino , Masculino , Animales , Clima , Estaciones del Año , Temperatura
14.
Commun Biol ; 7(1): 42, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182741

RESUMEN

Torpor and arousal cycles, both daily and seasonal (e.g. hibernation), are crucial for small mammals, including bats, to maintain the energy and water balance. The alternation between torpor and arousal leads to metabolic changes, leaving traceable evidence of metabolic wastes in urine. In this study we investigated urinary creatinine and acetoacetate (a ketone body) in the Eastern bent-wing bat (Miniopterus fuliginosus) in Mungyeong, South Korea. We found an increase in urinary creatinine during torpor in summer, indicating changes in renal water reabsorption rates during the active season. Although we could not confirm ketonuria in hibernating bats due to a methodological limitation caused by the small amount of urine, we verified an increase in urinary creatinine concentration during hibernation. This finding suggests that managing water stress resulting from evaporative water loss is one of key reasons for arousal during hibernation in Eastern bent-wing bats.


Asunto(s)
Quirópteros , Hibernación , Letargo , Animales , Creatinina , República de Corea
15.
Glob Chang Biol ; 30(1): e17035, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37987538

RESUMEN

Populations wax and wane over time in response to an organism's interactions with abiotic and biotic forces. Numerous studies demonstrate that fluctuations in local populations can lead to shifts in relative population densities across the geographic range of a species over time. Fewer studies attempt to disentangle the causes of such shifts. Over four decades (1983-2022), we monitored populations of hibernating Indiana bats (Myotis sodalis) in two areas separated by ~110 km. The number of bats hibernating in the northern area increased from 1983 to 2011, while populations in the southern area remained relatively constant. We used simulation models and long-term weather data to demonstrate the duration of time bats must rely on stored fat during hibernation has decreased in both areas over that period, but at a faster rate in the northern area. Likewise, increasing autumn and spring temperatures shortened the periods of sporadic prey (flying insect) availability at the beginning and end of hibernation. Climate change thus increased the viability of northern hibernacula for an increasing number of bats by decreasing energetic costs of hibernation. Then in 2011, white-nose syndrome (WNS), a disease of hibernating bats that increases energetic costs of hibernation, was detected in the area. From 2011 to 2022, the population rapidly decreased in the northern area and increased in the southern area, completely reversing the northerly shift in population densities associated with climate change. Energy balance during hibernation is the singular link explaining the northerly shift under a changing climate and the southerly shift in response to a novel disease. Continued population persistence suggests that bats may mitigate many impacts of WNS by hibernating farther south, where insects are available longer each year.


Asunto(s)
Quirópteros , Hibernación , Animales , Quirópteros/fisiología , Densidad de Población , Cambio Climático , Hibernación/fisiología , Estaciones del Año
16.
FEBS Open Bio ; 14(2): 241-257, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37925593

RESUMEN

Torpor or heterothermy is an energy-saving mechanism used by endotherms to overcome harsh environmental conditions. During winter, the garden dormouse (Eliomys quercinus) hibernates with multiday torpor bouts and body temperatures of a few degrees Celsius, interrupted by brief euthermic phases. This study investigates gene expression within the hypothalamus, the key brain area controlling energy balance, adding information on differential gene expression potentially relevant to orchestrate torpor. A de novo assembled transcriptome of the hypothalamus was generated from garden dormice hibernating under constant darkness without food and water at 5 °C. Samples were collected during early torpor, late torpor, and interbout arousal. During early torpor, 765 genes were differentially expressed as compared with interbout arousal. Twenty-seven pathways were over-represented, including pathways related to hemostasis, extracellular matrix organization, and signaling of small molecules. Only 82 genes were found to be differentially expressed between early and late torpor, and no pathways were over-represented. During late torpor, 924 genes were differentially expressed relative to interbout arousal. Despite the high number of differentially expressed genes, only 10 pathways were over-represented. Of these, eight were also observed to be over-represented when comparing early torpor and interbout arousal. Our results are largely consistent with previous findings in other heterotherms. The addition of a transcriptome of a novel species may help to identify species-specific and overarching torpor mechanisms through future species comparisons.


Asunto(s)
Hibernación , Myoxidae , Letargo , Animales , Hibernación/genética , Myoxidae/genética , Letargo/genética , Encéfalo , Perfilación de la Expresión Génica
17.
Antioxid Redox Signal ; 40(4-6): 345-368, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-36802926

RESUMEN

Significance: The ultimate manifestations of life, birth, survival under various environmental pressures and death are based on bioenergetics. Hibernation is a unique survival strategy for many small mammals that is characterised by severe metabolic depression and transition from euthermia to hypothermia (torpor) at body temperatures close to 0°C. These manifestations of life were made possible by the remarkable "social" behavior of biomolecules during billions of years of evolution: the evolution of life with oxygen. Oxygen was necessary for energy production and the evolutionary explosion of aerobic organisms. Recent Advances: Nevertheless, reactive oxygen species, formed through oxidative metabolism, are dangerous-they can kill a cell and, on the other hand, play a plethora of fundamentally valuable roles. Therefore, the evolution of life depended on energy metabolism and redox-metabolic adaptations. The more extreme the conditions for survival are, the more sophisticated the adaptive responses of organisms become. Hibernation is a beautiful illustration of this principle. Hibernating animals use evolutionarily conserved molecular mechanisms to survive adverse environmental conditions, including reducing body temperature to ambient levels (often to ∼0°C) and severe metabolic depression. This long-built secret of life lies at the intersection of oxygen, metabolism, and bioenergetics, and hibernating organisms have learned to exploit all the underlying capacities of molecular pathways to survive. Critical Issues: Despite such drastic changes in phenotype, tissues and organs of hibernators sustain no metabolic or histological damage during hibernation or upon awakening from hibernation. This was made possible by the fascinating integration of redox-metabolic regulatory networks whose molecular mechanisms remain undisclosed to this day. Future Directions: Discovering these molecular mechanisms is not warranted only to understand hibernation in itself but to help explain complex medical conditions (hypoxia/reoxygenation, organ transplantation, diabetes, and cancer) and to even help overcome limitations associated with space travel. This is a review of integrated redox-metabolic orchestration in hibernation. Antioxid. Redox Signal. 40, 345-368.


Asunto(s)
Hibernación , Animales , Oxidación-Reducción , Hibernación/fisiología , Especies Reactivas de Oxígeno/metabolismo , Oxígeno , Sciuridae/metabolismo
18.
Cryobiology ; 114: 104838, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38097057

RESUMEN

Hibernating Spermophilus dauricus experiences minor muscle atrophy, which is an attractive anti-disuse muscle atrophy model. Integrated metabolomics and proteomics analysis was performed on the hibernating S. dauricus during the pre-hibernation (PRE) stage, torpor (TOR) stage, interbout arousal (IBA) stage, and post-hibernation (POST) stage. Time course stage transition-based (TOR vs. PRE, IBA vs. TOR, POST vs. IBA) differential expression analysis was performed based on the R limma package. A total of 14 co-differential metabolites were detected. Among these, l-cystathionine, l-proline, ketoleucine, serine, and 1-Hydroxy-3,6,7-Trimethoxy-2, 8-Diprenylxanthone demonstrated the highest levels in the TOR stage; Beta-Nicotinamide adenine dinucleotide, Dihydrozeatin, Pannaric acid, and Propionylcarnitine demonstrated the highest levels in the IBA stage; Adrenosterone, PS (18:0/14,15-EpETE), S-Carboxymethylcysteine, TxB2, and 3-Phenoxybenzylalcohol demonstrated the highest levels in the POST stage. Kyoto Encyclopedia of Genes and Genomes pathways annotation analysis indicated that biosynthesis of amino acids, ATP-binding cassette transporters, and cysteine and methionine metabolism were co-differential metabolism pathways during the different stages of hibernation. The stage-specific metabolism processes and integrated enzyme-centered metabolism networks in the different stages were also deciphered. Overall, our findings suggest that (1) the periodic change of proline, ketoleucine, and serine contributes to the hindlimb lean tissue preservation; and (2) key metabolites related to the biosynthesis of amino acids, ATP-binding cassette transporters, and cysteine and methionine metabolism may be associated with muscle atrophy resistance. In conclusion, our co-differential metabolites, co-differential metabolism pathways, stage-specific metabolism pathways, and integrated enzyme-centered metabolism networks are informative for biologists to generate hypotheses for functional analyses to perturb disuse-induced muscle atrophy.


Asunto(s)
Hibernación , Cetoácidos , Músculo Esquelético , Animales , Músculo Esquelético/metabolismo , Sciuridae/metabolismo , Proteómica , Cisteína/metabolismo , Criopreservación/métodos , Atrofia Muscular/metabolismo , Hibernación/fisiología , Transportadoras de Casetes de Unión a ATP/metabolismo , Serina/metabolismo , Metionina/metabolismo
19.
Braz. j. biol ; 84: e249617, 2024. graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1345540

RESUMEN

Abstract Hibernation is a natural condition of animals that lives in the temperate zone, although some tropical lizards also experience hibernation annually, such as the lizard native from South America, Salvator merianae, or "tegu" lizard. Even though physiological and metabolic characteristic associated with hibernation have been extensively studied, possible alterations in the red blood cells (RBC) integrity during this period remains unclear. Dehydration and fasting are natural consequences of hibernating for several months and it could be related to some cellular modifications. In this study, we investigated if the osmotic tolerance of RBCs of tegu lizard under hibernation is different from the cells obtained from animals while normal activity. Additionally, we indirectly investigated if the RBCs membrane of hibernating tegus could be associated with oxidation by quantifying oxidized biomolecules and the activity of antioxidant enzymes. Our findings suggest that RBCs are more fragile during the hibernation period, although we did not find evidence of an oxidative stress scenario associated with the accentuated fragility. Even though we did not exclude the possibility of oxidative damage during hibernation, we suggested that an increased RBCs volume as a consequence of hypoosmotic blood during hibernation could also affect RBCs integrity as noted.


Resumo A hibernação é uma condição natural dos animais que vivem na zona temperada, embora alguns lagartos tropicais também experenciem hibernação anualmente, como é o caso do lagarto nativo da América do Sul, Salvator merianae ou "teiú". Embora as características fisiológicas e metabólicas associadas à hibernação tenham sido amplamente estudadas, possíveis alterações na integridade das hemácias durante esse período ainda permanecem obscuras. A desidratação e o jejum são consequências naturais da hibernação por vários meses e podem estar relacionadas a algumas modificações celulares. Neste estudo, investigamos se a tolerância osmótica de hemácias do lagarto teiú sob hibernação são diferentes das células obtidas de animais em atividade normal. Além disso, investigamos indiretamente por meio da quantificação de biomoléculas oxidadas e da atividade de enzimas antioxidantes se a membrana das hemácias dos teiús em hibernação poderia estar associada à oxidação. Nossos resultados sugerem que as hemácias possuem maior fragilidade durante o período de hibernação, embora não tenhamos encontrado evidências de um cenário de estresse oxidativo associado à essa fragilidade acentuada. Embora não tenhamos excluído a possibilidade de dano oxidativo durante a hibernação, sugerimos que um aumento no volume das hemácias como consequência de sangue hipoosmótico durante a hibernação também poderia afetar a integridade de hemácias, tal como foi observado.


Asunto(s)
Animales , Hibernación , Lagartos , Oxidación-Reducción , Estrés Oxidativo , Eritrocitos
20.
J Vis Exp ; (201)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38047559

RESUMEN

One of the major pests of potato Solanum tuberosum L. in the temperate zone is the insect Colorado potato beetle (CPB). Most studies on the immunity and diseases of the CPB are conducted during active feeding stages. Nonetheless, there are fewer studies on resting stages, although these beetles spend most of their life cycle in a state of winter diapause (hibernation). In this work, a method for investigating CPB hibernation under natural conditions was developed and tested, offering an opportunity to collect a sufficient number of individuals in winter. In this article, CPB survival was assessed, and infectious agents at different stages of hibernation were identified. CPB mortality increased during the hibernation, reaching a maximum in April-May. Entomopathogenic fungi (Beauveria, Isaria, and Lecanicillium) and bacteria Bacillus, Sphingobacterium, Peribacillus, Pseudomonas, and Serratia were isolated from the dead insects. The survival rate of the beetles for the entire hibernation period was 61%. No frozen or desiccated beetles were found, indicating the success of the presented method.


Asunto(s)
Escarabajos , Hibernación , Solanum tuberosum , Animales , Larva , Colorado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...